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This paper introduces a median estimator of the logistic regression parameters. It is defined
as the classical L1-estimator applied to continuous data Z1, . . . , Zn obtained by a statistical
smoothing of the original binary logistic regression observations Y1, . . . , Yn. Consistency and
asymptotic normality of this estimator are proved. Amethod called enhancement is introduced
which in some cases increases the efficiency of this estimator. Sensitivity to contaminations
and leverage points is studied by simulations and compared in thismannerwith the sensitivity
of some robust estimators previously introduced to the logistic regression. The new estimator
appears to be more robust for larger sample sizes and higher levels of contamination.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and basic concepts

In this paper we study estimation of Euclidean parameters �0 ∈ Rd in logistic regression based on independent observations
Y1 ∼ Be(�1), . . . , Yn ∼ Be(�n) where the Bernoulli parameters �i = Pr(Yi = 1) = EYi depend on �0 and regressors x1, . . . ,xn from
Rd,

�i = �i(�0) = �(xTi �0). (1.1)

Here and elsewhere in the paper,xT�=∑d
j=1 xj�j denotes the scalar product of arbitrary vectorsx=(x1, . . . , xd)T,�=(�1, . . . ,�d)T

from Rd and

�(t) = et

1 + et
(1.2)
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the standard logistic function. The MLE �n = �n(Y1, . . . , Yn) of �0 minimizes the deviances (negative scores)

Dn(�) =
n∑

i=1

di(�)

of the sample Yn = (Y1, . . . , Yn) where

di(�) = − ln[�i(�)Yi (1 − �i(�))1−Yi ] = −Yi ln�i(�) − (1 − Yi) ln(1 − �i(�)) (1.3)

are the deviances (negative scores) of individual observations Yi for �i(�) = �(xT
i
�). Thus

�n = arg minDn(�) = arg min
n∑

i=1

di(�). (1.4)

Notice that the expected deviances are of the form

EDn(�) =
n∑

i=1

Edi(�) =
n∑

i=1

[I(�i(�0)‖�i(�)) + H(�i(�0))], (1.5)

where

I(p0‖p) = p0 ln
p0
p

+ (1 − p0) ln
1 − p0
1 − p

is the non-negative information divergence of the Bernoulli models Be(p0) and Be(p) which reduces to zero iff p0 = p and

H(p0) = −p0 lnp0 − (1 − p0) ln(1 − p0)

is the entropy of the model Be(p0) which does not depend on p. Therefore �0 is the unique arg min EDn(�) unless there exists
� �= �0 with the property

�i(�) = �i(�0) (i.e. xTi (� − �0) = 0) for all 1� i�n.

This leads to the consistency of MLE unless all regressors x1,x2, . . . are on a hyperplane in Rd (cf. Andersen, 1990; Agresti, 2002;
Pardo et al., 2006 and references therein).

However, this optimistic picture dramatically changes as soon as the true models Be(�i) for �i = �(xT
i
�0) are positively

�-contaminated by some alternative Bernoulli models Be(pi), e.g. by Be(1 − �i). Then the true models are

Be(�i + �(1 − 2�i)) = (1 − �)Be(�i) + �Be(1 − �i) (1.6)

for some 0< �<1 which differ from Be(�i) unless �i = 1
2 . Hence �0 remains to be the unique arg min EDn(�) for all sufficiently

large n only in the trivial case where

�(xTi �0) = 1/2 (i.e. xTi �0 = 0) for all i�1. (1.7)

In the remaining cases even small contaminations �>0 may lead to large expected deviances di(�0) for some i�1, thus pushing
the MLE's �n = arg minDn(�) far away from the true value of �0. Indeed, the expected deviances di(�0) are in the contaminated
models (1.6) given by the formula

Edi(�0) = I(�i + �(1 − 2�i)‖�i) + H(�i + �(1 − 2�i)) (cf. (1.5)).

Hence for small �i (in symbols �i ≈ 0) we get 1 − �i ≈ 1 and �i + �(1 − 2�i) ≈ �. This means that for all n� i

EDn(�0)�Edi(�0) ≈ � ln
�
�i

+ (1 − �) ln(1 − �) + H(�),

where the right-hand term tends to infinity as �i → 0. At the same time �1 = 0 satisfies xT
i
�1 = 0 and therefore �(xT

i
�1) = 1

2
(cf. (1.7)) so that for �0 �= 0

EDn(�1) = 0< EDn(�0).

This means that, as stated above, the MLE �n will be far from the true parameter �0.
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In order to restrict the undesired influence of large deviances resulting from contaminations of logistic regression models
Be(�i) = Be(�(xT

i
�0)), previous authors replaced the deviances di(�) in definition (1.4) by appropriate functions �(di(�)) of de-

viances, or even by more general expressions �(Yi,�(xT
i
�)). This led toM-estimators �n of the type

�n = arg min
n∑

i=1

�(di(�)) (1.8)

and

�n = arg min
n∑

i=1

�(Yi,�(xTi �)) (1.9)

for � : (0, ∞) → R and � : (0, ∞) × (0,1) → R, or to the related M-estimators �n which solve for a suitable � : R2d+1 → Rd the
equations

n∑
i=1

�(Yi,xi,�) = 0. (1.10)

The robust estimator�(0)
n defined by (1.8) for a special function�(t) increasingwith rate

√
t as t → ∞wasproposed by Pregibon

(1982). Morgenthaler (1992) proposed the robust estimator �(1)
n defined by (1.9) for the function

�(Y,�(xT�)) = |Y − �(xT�)|√
�(xT�)(1 − �(xT�))

.

In order to improve asymptotic properties he redefined �(1)
n as the solution of (1.10) for the function

�(Y,x,�) =
√

�(xT�)(1 − �(xT�))(Y − �(xT�))x. (1.11)

This estimator will be calledMorg-estimator in the sequel.
Bianco and Yohai (1996) improved the asymptotic properties and also the robustness of the Pregibon's �(0)

n by introducing the
class ofM-estimators defined as minimizers (1.9) for

�(Yi,�(xTi �)) = �(di(�)) + �0(�(xTi �)), (1.12)

where �(t) is bounded and differentiable on (0, ∞) with a derivative �′(t) and the compensator function �0 is of the form

�0(p) = �1(p) + �1(1 − p) (1.13)

for �1 depending on � by the formula

�1(p) =
∫ p

0
�′(− ln t)dt, p ∈ (0,1). (1.14)

These authors found pleasing statistical properties in the particular case where

�(0) = 0 and �′(t) = (1 − t)I(0< t <1) (1.15)

and I(·) denotes the indicator function. This M-estimator is denoted by �(2)
n and called BY-estimator in the sequel. Croux and

Haesbroeck (2003) found that evenmorepleasing statistical properties are obtainedwhen theBY-estimator from(1.15) is replaced
by the alternative estimator from the general Bianco--Yohai class defined by

�(0) = 0 and �′(t) = e−√
1/2I(0< t <1/2) + e−√

tI(t� 1
2 ). (1.16)

This particularM-estimator is denoted by �(3)
n and called CH-estimator in the sequel.

Extensions of theMorgenthaler-typeM-estimators defined by Eq. (1.10) were studied later by several authors, e.g. Kordzakhia
et al. (2001), Adimari and Ventura (2001), Rousseeuw and Christmann (2003), Gervini (2005) and others cited there.

In this paper we propose a new robust M-estimator of the logistic regression parameter �0 ∈ Rd obtained by application of
the classical robust L1-method (cf. Hampel et al., 1986; Jurečková and Sen, 1996; Zwanzig, 1997) to the continuous data

Zi = Yi + Ui, 1� i�n (1.17)
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Fig. 1. Fp(z) full line, F1−p(z) dashed line.

obtained by adding mutually and on Yi independently U(0,1)-distributed (i.e. uniformly on (0,1) distributed) random variables
Ui to the mutually independent above introduced observations

Yi ∼ Be(�(xTi �0)). (1.18)

In other words, we define the estimator

�̂n = arg min
�

n∑
i=1

|Zi − m(�(xTi �))| (1.19)

for Zi given by (1.17), (1.18) and for the median function

m(p) = F−1
p (1/2) = inf{z ∈ R : Fp(z)�1/2}

corresponding to the class of distribution functions Fp of the random variables

Z = Be(p) + U(0,1)

when the parameter p varies in the closed interval [0,1]. Obviously, for each p ∈ [0,1] and z ∈ R

Fp(z) = (1 − p)zI(0< z�1) + (1 − 2p + pz))I(1< z�2) + I(z >2) (1.20)

and the median function has the explicit form

m(p) = 1 + p − 1/2
p ∨ (1 − p)

, 0�p�1. (1.21)

Here and in the sequel we use the notation

a ∨ b = max{a, b} and a ∧ b = min{a, b}.
The graphs of functions Fp(z) and m(p) are presented in Figs. 1 and 2. Fig. 2 also displays the inverse median function

m−1(z) = z − 1/2
2 − z

I
(
1/2�z�1

)+ 1
2(2 − z)

I
(
1< z�3/2

)
(1.22)

used in the sequel.

Definition 1.1. Operation (1.17) is called a statistical smoothing of the discrete observations Yi.

Definition 1.2. The estimator �̂n defined by (1.17)--(1.19) is a median estimator of logistic regression parameters �0 called
Med-estimator in the sequel.

Remark 1.1. Median function m(p) corresponding to the family of continuous random variables Z = Be(p) + U(0,1) is strictly
increasing in p ∈ [0,1]. Since the logistic function is strictly increasing too, the argumentm(�(xT�)) in (1.19) detects every change
of the product xT�. Contrary to this, the median function m̃(p) corresponding to the family of discrete random variables Y =Be(p)

is piecewise constant in p ∈ (0,1) so that m̃(�(xT�)) is insensitive to small variations of the product xT�. Therefore the robust
L1-estimation cannot be applied directly to the logistic regression data Yi, i.e., the estimator

�̃n = arg min
�

n∑
i=1

|Yi − m̃(�(xTi �))|

is not of a too much practical interest.
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Fig. 2.Median function m(p) and its inverse m−1(z).

Remark 1.2. The operation of statistical smoothing Zi = T(Yi) given by (1.17) is statistically sufficient because the image Zi allows
complete recovery of the original Yi by applying the integer-part operation [·] to Zi. It is equivalent to the observation of discrete
data through a semicontinuous channel considered in the information theory. Such an observation procedure goes in the opposite
direction to the statistical quantization frequently applied to continuous data. The quantization is usually accompanied by the
loss of information so that it is not statistically sufficient.

Remark 1.3. The statistical smoothing (1.17) can also be applied to integer valued observations Yi in other discrete statistical
models. This makes the statistical methods developed for continuous models more widely applicable in discrete statistics than
just in the particular situation studied in this paper.

In the sections that followwe establish some desirable statistical properties of theMed-estimators such as the consistency and
asymptotic normality. In simple situations we compare asymptotic variances of these estimators with the asymptotic variances
of the above-mentioned selected classical estimators. We verify the robustness of our Med-estimators by demonstrating their
low sensitivity to high leverage outliers and also by demonstrating that they outperform the above-mentioned classical robust
estimators in certain special situations (e.g. heavy contaminations and large sample sizes). Our conclusions are based partly on
simulations of the models used in the previous literature for mutual comparison of various estimators in logistic regression.

2. Asymptotic theory

A large class of statistical models assume independent real valued observations Z1, . . . , Zn of the form

Zi ∼ F
u(xT

i
�0)

(z), 1� i�n. (2.1)

Similarly as above, here xi ∈ Rd are vectors of explanatory variables (regressors), �0 ∈ Rd is a vector of true parameters and xT
i
�

the scalar product. Further, u : R → � is a smooth mapping and F = {F� : � ∈ �} a family of distribution functions on R with
an interval parameter space � ⊆ R. The basic statistical problem related to these models is finding mappings �̂n = �̂n(Z1, . . . , Zn)

from Rn to Rd which can be used to estimate the unknown parameters �0 on the basis of observations (2.1).
Various desirable asymptotic or non-asymptotic properties are usually required from estimators �̂n. Such properties are often

found in the class of so-called least absolute deviation estimators (briefly L1-estimators) defined by

�̂n = arg min
�

n∑
i=1

|Zi − m(u(xTi �))| (2.2)

for a given functionm : � → R. From the extensive literature related to these estimators one canmention e.g. Koenker and Basset
(1978), Richardson and Bhattacharyya (1987), Yohai (1987), Pollard (1991), Morgenthaler (1992), Chen et al. (1993), Jurečková
and Procházka (1994), Knight (1998), Arcones (2001), Liese and Vajda (1999, 2003, 2004) and Maronna et al. (2006).
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In this section we study the asymptotics of the median estimator �̂n from (1.19) which estimates the true parameter �0 ∈ Rd

of the general logistic regression using the statistically smoothed responses

Zi = Yi + Ui ∼ F�(xT
i
�0)

(z) (cf. (1.17))

to the regressors xi where �(t) and Fp(z) are given by (1.2) and (1.20). We see that our data Zi as well as the estimator �̂n are
special cases of (2.1) and (2.2) for �(t) and Fp(z) given by (1.2) and (1.20) and for m(p) given by (1.21).

Our results are based on what Liese and Vajda (1999, 2003, 2004) proved concerning the general median estimators (2.2) of
parameters �0 in the general statistical models (2.1). Next follow conditions (c1)--(c8) for consistency and asymptotic normality
established by these authors and applied to the present median estimators (1.19).

(c1) The regressors x1, x2, . . . are from a compact setX ⊂ Rd and the probability measures

Qn = 1
n

n∑
i=1

	xi
(2.3)

tend weakly for n → ∞ to a probability measure Q on Borel subsets ofX.

Remark 2.1. If the regressors x1, x2, . . . ,xn are independently generated by a probability measure Q on the Borel subsets of a
compact setX ⊂ Rd then (c1) holds almost surely for theseX and Q . For example, if the dimension d = 1, then by the Glivenko
theorem, the empirical probability measure (2.3) tends almost surely to Q in the Kolmogorov distance. But the convergence in
this distance implies the weak convergence required by (c1).

(c2) The smallest eigenvalue of the matrix

� =
∫
X
xxT dQ(x) (2.4)

is positive. Hence for every � ∈ Rd different to �0

Q(x ∈ X : xT(� − �0) �= 0) >0. (2.5)

The following conditions (c3)--(c5) obviously hold for the distribution functions Fp(z) under consideration and their densities

fp(z) = (1 − p)I(0< z�1) + pI(1< z <2), z ∈ R. (2.6)

(c3) Distributions functions Fp(z) are continuous in both arguments p ∈ (0,1), z ∈ 0, ∞ and∫ +∞
−∞

|z|fp(z)dz = 1
2

+ p for each p ∈ (0,1). (2.7)

(c4) Distributions functions Fp(z), p ∈ (0,1) are increasing in z ∈ [0,2] in the strict sense

Fp(z1) < Fp(z2) for z1 < z2 from [0,2] (2.8)

and constant for z ∈ R − [0,2].
(c5) Distribution functions Fp(z), p ∈ (0,1) are stochastically ordered in the sense that for every 0< p1 < p2 <1 and z ∈ R it holds

Fp1 (z)�Fp2 (z) where

Fp1 (z) > Fp2 (z) if z ∈ [0,2]. (2.9)

The present conditions (c1)--(c5) imply the assumptions (E1+), (E2), (EM1), (EM2) and (M1)--(M4) of Theorem 2 and Lemmas
8 and 9 in Liese and Vajda (1999). For a detailed proof of this assertion we refer to Section 3 of Hobza et al. (2005). We shall prove
that the present model satisfies also the following less evident conditions of consistency and asymptotic normality considered in
Liese and Vajda (1999).

(c6) For every 0< p1 < p2 <1 there exists a >0 such that densities (2.6) and the median function m(p) satisfy the condition


(a) ≡ inf
|y|�a

(
inf

p1 �p�p2
fp(m(p) + y)

)
>0. (2.10)
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(c7) The quantile function m(p) is differentiable on (0,1) and the derivative m′(p) is locally Lipschitz in the sense that for every
p0 ∈ (0,1)

|m′(p) − m′(p0)|�2|p − p0|.
(c8) Densities (2.6) satisfy for every 0< p1 < p2 <1 the condition

lim
y→0

sup
p1 �p�p2

|fp(m(p) + y) − fp(m(p))| = 0. (2.11)

Lemma 2.1. In the present model conditions (c6)--(c8) hold.

Proof. (I) Condition (2.10) can be verified separately for p1 = 1
2 < p2 <1 and 0< p1 < p2 = 1

2 . We shall do this for p1 = 1
2 < p2 <1

as the alternative can be verified similarly. Let p > 1
2 be arbitrary. By (1.21),

3
2

> m(p) = 1 + 2p − 1
2p

>1

so that if y �= 0 with |y|� 1
2 is fixed then

fp(m(p) + y) = fp(m(p)) = p

unless m(p) + y�1 in which case fp(m(p) + y) = 1 − p. Thus

inf
1/2�p�p2

fp(m(p) + y)�1 − p

so that (2.10) holds.
(II) The median function (1.21) is continuously differentiable on the interval (0,1) with the positive derivative

m′(p) = 1

2[p ∨ (1 − p)]2 (2.12)

bounded above by 2. Therefore (c7) holds too.
(III) Similarly as (2.10), condition (2.11) can be verified separately for p1 = 1

2 < p2 <1 and 0< p1 < p2 = 1
2 . We shall do this for

p1 = 1
2 < p2 <1 as the alternative can be verified similarly. Let y �= 0 with |y|� 1

2 be arbitrarily fixed. Then

inf
1/2�p�p2

fp(m(p) + y)�1 − p.

The absolute difference |fp(m(p) + y) − fp(m(p))| is either zero or p − (1− p) = 2p − 1. This difference will be maximized if we take
maximal p satisfying the inequality m(p) + y�1 for the fixed y under consideration. Since m(p) is increasing in p, this means that

sup
1/2�p<p2

|fp(m(p) + y) − fp(m(p))| = fp∗ (m(p∗) + y) − fp∗ (m(p∗)),

where p∗ solves the equation m(p) + y = 1. Solutions p∗ exist only for y <0 (i.e. for − 1
2 < y <0) and then p∗ = 1/[2(1 − |y|)].

Thus we proved that

sup
1/2�p<p2

|fp(m(p) + y) − fp(m(p))|�2p∗ − 1 = |y|
1 − |y|

which implies (2.11) and completes the whole proof. �

The median function m(p) of (1.21) is bounded on [0,1]. By Lemma 8 in Liese and Vajda (1999), this means that the sufficient
condition of Lemma 9 in Liese and Vajda (1999) reduces to (2.5) assumed in (c2). Hence, by Theorem 2 and Lemmas 8 and 9 in
Liese and Vajda (1999), under (c1)--(c5) our Med-estimator �̂n consistently estimates the true �0 ∈ Rd provided the measure Q
of (c1) defines the function

m(�) =
∫

R

∫
X

|y − �(xT�)|dF�(xT�)
(y)dQ(x) for �(t) = m(�(t)) (2.13)

of variable � ∈ Rd satisfying for every �>0 the identifiability condition

inf
‖�−�0‖� �

m(�) >m(�0). (2.14)

This is used in the proof of the following consistency theorem.
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Theorem 2.1. If the regressors of the model under consideration satisfy (c1) and (c2) then the Med-estimator �̂n consistently estimates
the model parameters �0.

Proof. By assumptions and by what was said above, (c1)--(c8) hold. Hence it suffices to prove (2.14). For this proof of a technical
nature we refer to in Hobza et al. (2005, pp. 14--16) or Hobza et al. (2006, pp. 10--12). �

The next problem is the asymptotic normality of the Med-estimator �̂n. Let us start with the observation that the function �
defined in (2.13) is continuously differentiable with the derivative�′(t)=m′(�(t))�′(t) where �′(t)=�(t)(1−�(t)). Further, define
for i = 1,2, . . ., the function

�i(�) = �(xTi �0) − �(xTi �), � ∈ Rd,

and the random variables

Zi = Yi − �(xTi �0),

with probability densities

f̃i(z) = f�(xT
i
�0)

(z + �(xTi �0)), z ∈ R.

The functions �i(�) are continuously differentiable on Rd with gradients

grad(�i(�)) = −�′(xTi �)xi.

Therefore the linear termLn(h) considered in (2.3) of Liese and Vajda (2004) is given here by

Ln(h) = − 1√
n

n∑
i=1

D+|Zi|�′(xTi �)xTi h, h ∈ Rd,

where D+|z| denotes the right-hand derivative of the function |z|,
D+|z| = I(0�z < ∞) − I(−∞ < z <0). (2.15)

Since ED+|Zi| = 0, the variance ofLn(h) is hTnh for the matrix n given in accordance with (2.5) of Liese and Vajda (1999) by

n = 1
n

n∑
i=1

E(D+|Zi|)2(�′(xTi �))2xixTi .

But E(D+|Zi|)2 = 1 so that we can write the matrix n in the integral form

n =
∫
X

(�′(xT�))2xTxdQn(x),

where Qn is the empirical measure from (c1). Since �′(xT�) is continuous and bounded onX, it holds

lim
n→∞ n =  ≡

∫
X

(�′(xT�))2xTxdQ(x), (2.16)

where Q is the limit measure from (c1).
Let us now evaluate the matrices

Qn = 1
n

n∑
i=1

gi(0)∇�(xTi �0)(∇�(xTi �0))T,

where gi(t) denote derivatives of the functions Gi(t) = ED|Zi + t| of variable t ∈ R introduced in Liese and Vajda (2003, p. 467).
By formula (2.15) for D+|z|, if we put �i = �(xT

i
�0) and �i = �(xT

i
�0) then

Gi(t) = EI(Zi + t >0) − EI(Zi + t�0) = EI(Yi >�i − t) − EI(Yi ��i − t) = 1 − 2F�i
(�i − t).

Thus gi(t) = 2f�i
(�i − t) and

gi(0) = 2f�(xT
i
�0)

(�(xTi �0)).

Therefore the matrices Qn may be represented as the integrals

Qn = 2
∫
X

f�(xT�0)
(�(xT�0))(�′(xT�0))2xTxdQn(x).



Author's personal copy

3830 T. Hobza et al. / Journal of Statistical Planning and Inference 138 (2008) 3822 -- 3840

Since �′(xT
i
�0) is continuous and bounded onX and, by (c8), the function

f�(xT�0)
(�(xT�0)) = f�(xT�0)

(m(�(xT�0)))

is continuous and bounded onX too, it holds

lim
n→∞Qn =Q ≡ 2

∫
X

f�(xT�0)
(�(xT�0))(�′(xT�0))2xTxdQ(x). (2.17)

Finally, D+�(Zi) = D+|Zi| is in the present situation bounded and ∇fi(�0) = grad(�i(�0)) = −�′(xT
i
�0)xi is bounded uniformly

for all possible xi ∈ X. Consequently the Liapunov condition (2.6) of Liese and Vajda (2004) holds. Similarly, one can verify that
conditions (2.39) and (2.40) as well as (C3) and (C4) in Liese and Vajda (2003) hold. Thus, by Lemma 3 in Liese and Vajda (2003),
the remaining conditions (C5) and (C6) stated there hold too.

To finalize the evaluation of the matrices  and Q given in (2.16), (2.17), take into account that the definition of �(t) in (2.13)
implies in the present situation

�(t) =

⎧⎪⎨⎪⎩
3
2

− e−t

2
if t�0,

1
2

+ et

2
if t <0.

Therefore

�′(t) = e−|t|
2

if t ∈ R.

Further

f�(t)(�(t)) = �(t) ∨ (1 − �(t)) = 1
1 + e−t

∨ 1
1 + et

= 1
1 + e−|t| = e|t|

1 + e|t| .

Consequently,

f�(t)(�(t))(�′(t))2 = e−|t|
4(1 + e|t|)

and by (2.16), (2.17)

 = 1
4

∫
X

e−2|xT�0|xxT dQ(x) (2.18)

and

Q= 1
2

∫
X

e−|xT�0|

1 + e|xT�0| xx
T dQ(x). (2.19)

Thus we can conclude that if (c1) and (c2) hold then all assumptions of Theorem 1 in Liese and Vajda (2004) are satisfied and the
following assertion follows from there.

Theorem 2.2. Let the regressors of the model under consideration satisfy (c1) and (c2). If the limit matrixQ in (2.19) is positive definite
then the Med-estimator �̂n of the model parameters �0 is asymptotically normal in the sense that

√
n(�̂n − �0)

L−→
n→∞N(0,Q−1Q−1) (2.20)

for  given in (2.18).

Proof. See above. �

Example 2.1. Most simple is the application of Theorem 2.2 to the univariate logistic regression

Yi ∼ Be(�(xi�0)), 1� i�n (2.21)

with identical regressors x1 = x2 = · · · = 1 and �0 ∈ R. In this model the Med-estimator �̂n ∈ R is defined by

�̂n = arg min
�

n∑
i=1

|Zi − m(�(�))| for Zi = Yi + Ui (cf. (1.17)–(1.19)). (2.22)
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Then (c1) and (c2) hold for the Dirac measure Q = 	1 concentrated at the point x1 = x2 = · · · = 1 from the singletonX= {1} ⊂ R.
Therefore from (2.18) and (2.19) we get

 = 1
4
e−2|�0|, Q= e−|�0|

2(1 + e|�0|)

so that Q−1Q−1 = [1 + e|�0|]2 and according to (2.20)

√
n(�̂n − �0)

L−→
n→∞N(0, [1 + e|�0|]2). (2.23)

Note that this asymptotic normality can also be verified directly from the central limit theorem applied to the explicit formula

�̂n = �−1(m−1(Z(n/2))) (2.24)

which can easily be obtained from definition (2.22), where Z(n/2) denotes the median of Z1, . . . , Zn, m−1(z) is the inverse function
from (1.22) also given in Fig. 2 and

�−1(p) = ln
p

1 − p
, 0< p <1 (2.25)

is the inverse to the logistic function �(t) of (1.2). This derivation can be found in Hobza et al. (2006, p. 16).

Notice that

1 + e|�0| = [�(�0) ∧ (1 − �(�0))]−1. (2.26)

Hence the asymptotic variance [1+e|�0|]2=[�(�0)∧ (1−�(�0))]−2 in (2.23) is strictly larger than the reversed Fisher information

J−1(�0) = [�(�0)(1 − �(�0))]−1

in thestatisticalmodelBe(�(�0)). Therefore theMed-estimator �̂n of (2.22)or (2.24) isnotasymptoticallyefficient. Its subefficiency
can to some extent be suppressed by the method of enhancing introduced in Section 3. In Section 4 we shall see that this
subefficiency is compensated by the very desirable property of robustnesswith respect to contaminations of themodel Be(�(�0)).

3. Enhancement

As illustrated on the lines above, application of the L1-estimators (2.2) in discrete statistical models with observations Yi,
1� i�n statistically smoothed into the continuous form (2.1) is usually accompanied by a loss of efficiency achievable in the
originaldiscretemodels. Bychoosingasimpleconcrete L1-estimatorwecan try to findamethod for suppressionof this inefficiency.

An example of an L1-estimator which is even simpler than the Med-estimator (2.22), (2.24) is the median estimator

p̂n = arg min
p

n∑
i=1

|Zi − m(p)| = m−1(Z(n/2)) (3.1)

of the Bernoulli parameter p0 ∈ (0,1) based on the smoothed versions Zi = Yi + Ui (cf. (1.17)) of the original discrete observations
Yi ∼ Be(p0). In (3.1), m(p) is themedian function (1.21), m−1(z) is its inverse (1.22) and Z(n/2) is themedian of Z1, . . . , Zn. It is well
known that the Fisher information in the model Be(p0) isJ(p0) = 1/[p0(1 − p0)] and that the MLE

pn = 1
n

n∑
i=1

Yi (3.2)

of p0 is asymptotically efficient in the sense

√
n(pn − p0)

D−→
n→∞N(0,1/J(p0)) = N(0, p0(1 − p0)). (3.3)

On the other hand, it is easy to prove (see Hobza et al., 2006, p. 15) that the Med-estimator p̂n is asymptotically normal in the
sense

√
n(̂pn − p0)

D→
n→∞N(0, [p0 ∨ (1 − p0)]2), (3.4)

where

[p0 ∨ (1 − p0)]2�p0(1 − p0).

Since this inequality is strict unless p0 = 1
2 , the Med-estimator p̂n is asymptotically less efficient than the MLE pn except in the

special case when p0 = 1
2 .
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The set of statistically smoothed data Zi = Yi + Ui, 1� i�n can be expanded by considering for k >1 the matrix of data

Zij = Yi + Uij, 1� i�n, 1� j�k, (3.5)

where Uij are U(0,1)-distributed and mutually as well as on Y1, . . . , Yn independent random variables. If a method of processing
the data Z1, . . . , Zn is statistically optimal in an appropriate sense, like e.g. the MLE

p̃n(Z1, . . . , Zn) = arg max
p

n∏
i=1

fp(Zi) = arg max
p

n∏
i=1

pYi (1 − p)1−Yi

coinciding with the classical Bernoulli MLE pn = pn(Y1, . . . , Yn) introduced in (3.2), then its performance cannot be improved by
expanding the sufficient statistic (Z1, . . . , Zn). For example, it is easy to see that the MLE

p̃n(Z11, . . . , Znn) = arg max
p

k∏
j=1

n∏
i=1

fp(Zij)

"enhanced'' by utilizing the expanded data set (3.5) coincides with the previous MLE p̃n(Z1, . . . , Zn) ≡ pn. On the other hand, if
the method is suboptimal, like for example the median estimator p̂n = p̂n(Z1, . . . , Zn) introduced in (3.1), then its performance
can be improved by using the expanded data set (3.5).

The following theorem motivates this section. It deals with the k-enhanced median estimator

p̂n∗k = arg min
p

k∑
j=1

n∑
i=1

|Zij − m(p)| = m−1(Z(nk/2)) (3.6)

of the Bernoulli parameter p0 ∈ (0,1) where m(p) is the same as in (3.1), Z11, . . . , Znk are the smoothed observations (3.5) and
Z(nk/2) is the median of all these observations. More precisely, it deals with the expected squared and absolute errors

�2 (̂pn∗k) = E(̂pn∗k − p0)2 and e(̂pn∗k) = E|̂pn∗k − p0| (3.7)

of the estimators p̂n∗k and compares them with the expected squared error

�2(pn) = E(pn − p0)2 = p0(1 − p0)

n
(3.8)

and the expected absolute error

e(pn) = E|pn − p0| = 1
n

n∑
r=0

|r − np0|
(

n

r

)
pr
0(1 − p0)n−r (3.9)

of the classical MLE pn minimizing the expected squared error (variance) in the class of all unbiased estimators (cf. Mood et al.,
1974, Example 31, p. 322).

Theorem 3.1. The k-enhanced median estimator p̂n∗k is asymptotically optimal in the sense that for each n�1

�2 (̂pn∗k) −→
k→∞

�2(pn) and e(̂pn∗k) −→
k→∞

e(pn). (3.10)

Proof. See Hobza et al. (2006, pp. 18--21). �

The method of smoothing and the subsequent median estimation originally introduced for continuous statistical models is
illustrated experimentally in Table 1.

This table also illustrates the loss of efficiency resulting from the median estimation and its compensation by means of the
enhancement procedure introduced above. Among other it verifies the convergences established in Theorem3.1. Amore complete
table also illustrating p0 = 0.1 and 0.5 can be found as Table 1 in Hobza et al. (2006).

Motivated by Theorem 3.1 and its experimental verifications, we extend our Definition 1.2 as follows.

Definition 3.1. For every k�1 we define the k-enhanced median estimator (briefly, k-Med-estimator) �̂n∗k of the parameters of
logistic regression �0 by the condition

�̂n∗k = arg min
�

k∑
j=1

n∑
i=1

|Zij − m(�(xTi �))|, (3.11)
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Table 1
Analysis of the proposed smoothing method in the Bernoulli model Be(p0)

p0 p̃n n = 10 n = 20 n = 50 n = 100

MAE STD MAE STD MAE STD MAE STD

0.2 pn 0.097 0.127 0.071 0.090 0.045 0.057 0.032 0.040
p̂n 0.214 0.326 0.153 0.214 0.091 0.119 0.065 0.082
p̂n∗5 0.133 0.171 0.093 0.118 0.058 0.073 0.039 0.049
p̂n∗10 0.118 0.149 0.082 0.104 0.052 0.066 0.035 0.044
p̂n∗50 0.105 0.132 0.074 0.092 0.047 0.059 0.033 0.041
p̂n∗100 0.104 0.131 0.073 0.090 0.046 0.058 0.032 0.040

Compared are two estimators p̃n, namely the MLE pn and the Med-estimator p̂n together with its enhanced versions p̂n∗k for selected k >1. The table
presents the mean absolute errors (MAE) and standard deviations (STD) (cf. (4.14), (4.15)) for given sample sizes n. The column minima are printed
bold.

where the random variables Zij are defined by (3.5) for the same logistic Yi ∼ Be(�(xT
i
�0)) as considered in the special case k = 1

in Definition 1.2.

Obviously, if k = 1 then the estimator introduced by this definition coincides with the median estimator of Definition 1.2.

Example 3.1. Let us consider the simple logistic regression model of Example 2.1 with an unknown parameter �0 ∈ R and the
Med-estimator �̂n satisfying (2.23). The MLE in this example is

�n = �−1(pn) for pn = 1
n

n∑
i=1

Yi (cf. (3.2)), (3.12)

where �−1 is the inverse function of �(t) in (1.2) and

Yi ∼ Be(p0) for p0 = �(�0). (3.13)

Combining the Taylor expansion of �−1(p) around p0 = �(�0) with (3.3) and using d/dp(�−1(p)) = [p(1 − p)]−1, we get

√
n(�n − �0)

D−→
n→∞N(0, [�(�0)(1 − �(�0))]−1) (cf. (2.23), (2.26)), (3.14)

where the asymptotic variance

[�(�0)(1 − �(�0))]−1 = (e−�0 + 1)(e�0 + 1) (3.15)

of the MLE �n is minimal in the class of all unbiased estimators of �0. In particular, for all �0 �= 0 it is smaller than the asymptotic
variance (e|�0| + 1)2 of the Med-estimator �̂n found in (2.23).

In Hobza et al. (2006, p. 22) we proved that the k-Med-estimators �̂n∗k satisfy for every k�1 the limit law

√
n(�̂n∗k − �0)2

D−→
n→∞N(0, s2

k
(�0)). (3.16)

Here s2
k
(�0) is an asymptotic variance of �̂n∗k for fixed k and n → ∞, tending to the minimal asymptotic variance (3.15) for fixed

n and k → ∞, i.e.,

s2
k
(�0) −→

k→∞
[�(�0)(1 − �(�0))]−1. (3.17)

Thus in the present example the enhancing enables to bring the asymptotic performance of theMed-estimator arbitrarily close to
the optimal MLE. This result is not surprising---it follows directly from Theorem 3.1 since in the present example Yi ∼ Be(�(�0))

and instead of p0 = �(�0) we estimate the one--one related �0 = �−1(p0) by �̂n∗k = �−1(p̂n∗k).

Remark 3.1. A systematic general theory of k-enhanced median estimators in the logistic regression exceeds the scope of the
present paper. In our researchwe carried out a simulation studywhich among others demonstrated that formore general models
Yi ∼ Be(�(xT

i
�0)) the k-Med-estimators remain systematically for all koutperformedby theMLE's. Some results of our simulations

are in Tables 2--5 of the next section. The previously mentioned conclusion is to some extent seen from the rows of Tables 4
and 5 corresponding to �=0. The tables of Section 4 at the same time demonstrate that the enhancement improves the efficiency
of median estimators but in some situations deteriorates their robustness.
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Table 2
Mean absolute errors (4.14), standard deviations (4.15) and rejection rates RR for selected estimators �̃n of the true parameter �0 = − ln 4 of the simple logistic
regression model Be(�(xi�0)) for random independent xi with Pr(xi = 1) = Pr(xi = −1) = 1

2

� �̃n n = 50 n = 100 n = 500 n = 1000

MAE STD RR (%) MAE STD RR (%) MAE STD RR (%) MAE STD RR (%)

0 �n 0.273 0.350 0 0.195 0.248 0 0.088 0.110 0 0.065 0.081 0
�̂n 0.579 0.854 7 0.436 0.617 0 0.180 0.246 0 0.121 0.153 0
�̂n∗5 0.371 0.504 1 0.256 0.338 0 0.114 0.142 0 0.082 0.104 0
�̂n∗10 0.324 0.424 0 0.233 0.297 0 0.102 0.128 0 0.073 0.091 0
�̂n∗50 0.291 0.376 0 0.201 0.256 0 0.091 0.114 0 0.067 0.083 0

0.1 �n 0.393 0.463 0 0.358 0.411 0 0.343 0.357 0 0.339 0.346 0
�̂n 0.563 0.708 3 0.448 0.617 0 0.346 0.380 0 0.335 0.354 0
�̂n∗5 0.432 0.509 0 0.373 0.432 0 0.338 0.357 0 0.338 0.348 0
�̂n∗10 0.417 0.498 0 0.365 0.418 0 0.341 0.357 0 0.337 0.346 0
�̂n∗50 0.399 0.467 0 0.360 0.413 0 0.342 0.357 0 0.339 0.346 0

0.2 �n 0.632 0.695 0 0.617 0.654 0 0.631 0.638 0 0.630 0.634 0
�̂n 0.685 0.783 1 0.624 0.685 0 0.623 0.640 0 0.626 0.633 0
�̂n∗5 0.631 0.702 0 0.615 0.659 0 0.630 0.639 0 0.629 0.634 0
�̂n∗10 0.629 0.700 0 0.616 0.657 0 0.632 0.639 0 0.629 0.633 0
�̂n∗50 0.633 0.696 0 0.619 0.656 0 0.631 0.638 0 0.630 0.634 0

0.3 �n 0.890 0.941 0 0.895 0.920 0 0.894 0.899 0 0.896 0.899 0
�̂n 0.874 0.950 0 0.879 0.920 0 0.885 0.894 0 0.894 0.897 0
�̂n∗5 0.883 0.940 0 0.892 0.920 0 0.893 0.899 0 0.896 0.898 0
�̂n∗10 0.887 0.940 0 0.893 0.919 0 0.892 0.897 0 0.896 0.899 0
�̂n∗50 0.889 0.940 0 0.895 0.920 0 0.893 0.898 0 0.896 0.899 0

Compared is the common value �n of the Morg-, CH- and BY-estimators with the median estimators �̂n and their k-enhancements �̂n∗k. The errors
are evaluated for the contaminated data Yi ∼ (1 − �) Be(�(xi�0)) + � Be(1 − �(xi�0)). The achieved minima are printed bold.

Table 3
The same simulations as in Table 2 evaluated for n(1 − �) standard logistic regression data Yi ∼ Be(�(xi�0)) for 1� i�n(1 − �) and n� leverage points
Yi ∼ Be(�(−10xi�0)) for n(1 − �) + 1� i�n

� �̃n n = 50 n = 100 n = 500 n = 1000

MAE STD RR (%) MAE STD RR (%) MAE STD RR (%) MAE STD RR (%)

0 �n 0.273 0.350 0 0.195 0.248 0 0.088 0.110 0 0.065 0.081 0
�̂n 0.579 0.854 7 0.436 0.617 2 0.180 0.246 0 0.121 0.153 0
�̂n∗5 0.371 0.504 1 0.256 0.338 0 0.114 0.142 0 0.082 0.104 0
�̂n∗10 0.324 0.424 0 0.233 0.297 0 0.102 0.128 0 0.073 0.091 0
�̂n∗50 0.291 0.376 0 0.201 0.256 0 0.091 0.114 0 0.067 0.083 0

0.1 �n 0.454 0.520 0 0.441 0.478 0 0.441 0.449 0 0.443 0.447 0
�̂n 0.575 0.718 1 0.474 0.541 0 0.425 0.451 0 0.436 0.449 0
�̂n∗5 0.470 0.539 0 0.441 0.489 0 0.439 0.450 0 0.443 0.449 0
�̂n∗10 0.461 0.529 0 0.440 0.484 0 0.442 0.452 0 0.442 0.447 0
�̂n∗50 0.457 0.522 0 0.443 0.481 0 0.441 0.449 0 0.443 0.447 0

0.2 �n 0.791 0.820 0 0.809 0.823 0 0.811 0.815 0 0.811 0.813 0
�̂n 0.774 0.835 0 0.783 0.821 0 0.806 0.813 0 0.808 0.811 0
�̂n∗5 0.779 0.818 0 0.803 0.822 0 0.810 0.814 0 0.811 0.813 0
�̂n∗10 0.791 0.824 0 0.806 0.823 0 0.811 0.814 0 0.811 0.813 0
�̂n∗50 0.791 0.821 0 0.809 0.824 0 0.812 0.816 0 0.811 0.813 0

0.3 �n 1.135 1.151 0 1.141 1.149 0 1.143 1.145 0 1.143 1.144 0
�̂n 1.092 1.126 0 1.119 1.134 0 1.138 1.141 0 1.140 1.142 0
�̂n∗5 1.127 1.147 0 1.134 1.144 0 1.142 1.144 0 1.143 1.143 0
�̂n∗10 1.129 1.147 0 1.140 1.148 0 1.142 1.144 0 1.143 1.144 0
�̂n∗50 1.135 1.151 0 1.141 1.149 0 1.143 1.145 0 1.143 1.144 0

The achieved minima are printed bold.
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Table 4
Mean absolute errors (4.16) and rejection rates RR for selected estimators �̃n = (�̃n0, �̃n1)T of the true parameter �0 = (�00,�01)T = (−2.82,2.82)T in the �-
contaminated logistic regression model (4.17) with Pr(Y = 1) = 0.2

� �̃n n = 50 n = 100 n = 500 n = 1000

MAE RR (%) MAE RR (%) MAE RR (%) MAE RR (%)

0 MLE 0.86 1 0.58 0 0.24 0 0.16 0
Morg 0.95 3 0.64 0 0.26 0 0.18 0
CH 0.84 1 0.58 0 0.25 0 0.17 0
BY 1.53 8 0.94 1 0.31 0 0.21 0
Med 3.27 18 2.55 9 0.92 0 0.50 0
5-Med 2.79 22 1.64 10 0.52 0 0.33 0
10-Med 2.50 24 1.73 10 0.46 0 0.31 0

0.05 MLE 1.07 0 0.98 0 1.05 0 1.05 0
Morg 1.06 1 0.83 0 0.77 0 0.77 0
CH 0.98 0 0.85 0 0.84 0 0.84 0
BY 1.48 5 0.91 1 0.55 0 0.53 0
Med 2.72 13 2.52 8 0.85 0 0.59 0
5-Med 2.09 18 1.54 8 0.58 0 0.49 0
10-Med 2.10 19 1.44 9 0.55 0 0.48 0

0.1 MLE 1.42 0 1.47 0 1.51 0 1.52 0
Morg 1.35 0 1.29 0 1.32 0 1.34 0
CH 1.33 0 1.33 0 1.36 0 1.37 0
BY 1.45 3 1.22 0 1.07 0 1.10 0
Med 2.70 11 2.29 4 0.98 0 0.92 0
5-Med 1.91 14 1.59 5 0.92 0 0.93 0
10-Med 1.82 16 1.57 6 0.91 0 0.93 0

0.2 MLE 1.99 0 2.01 0 2.03 0 2.03 0
Morg 1.94 0 1.96 0 1.97 0 1.98 0
CH 1.94 0 1.96 0 1.97 0 1.98 0
BY 1.90 0 1.89 0 1.94 0 1.95 0
Med 2.38 5 1.99 2 1.68 0 1.71 0
5-Med 2.03 5 1.88 2 1.72 0 1.73 0
10-Med 2.04 8 1.73 3 1.73 0 1.73 0

0.3 MLE 2.34 0 2.34 0 2.35 0 2.36 0
Morg 2.32 0 2.32 0 2.34 0 2.34 0
CH 2.32 0 2.32 0 2.34 0 2.34 0
BY 2.31 0 2.32 0 2.34 0 2.34 0
Med 2.46 3 2.27 1 2.23 0 2.24 0
5-Med 2.27 2 2.24 0 2.25 0 2.25 0
10-Med 2.29 3 2.22 0 2.25 0 2.25 0

The achieved minima are printed bold.

4. Robustness

The median estimator �̂n of logistic regression parameters �0 ∈ Rd was defined in Section 1.1 by means of the least absolute
deviations principle (the L1-method principle) which is motivated in the classical statistical literature by the robustness of the
corresponding statistical procedures (cf.Hampel et al., 1986or Jurečková andSen, 1996). Thereforeweexpected that this estimator
would be robust and this robustnesswas in fact ourmainmotivation for this research. A secondarymotivationwas to demonstrate
that the general theory of consistency and asymptotic normality ofM-estimators developed by Liese and Vajda (1999, 2003, 2004)
is applicable in particular concrete situations.

The primary purpose of this section is verification of the desired robustness of �̂n. The Med-estimator �̂n is in this respect
compared with several robust estimators known from the previous literature and discussed in Section 1.1, namely with the
Morgenthaler's Morg-estimator �(1)

n , the Bianco and Yohai's BY-estimator �(2)
n and the Croux and Haesbroeck's the CH-estimator

�(3)
n . For the sake of completeness, we have also included in our comparisons the MLE �n. The robustness is compared by means

of simulated performances of all these estimators in the logistic models Be(�(xT�0)) �-contaminated at the levels 0���0.3 by
the alternative data source Be(1 − �(xT�0)), or contaminated at the same levels � by the leverage points from logistic models
Be(�(̃xT�0)) with strongly distorted regressors x̃ in place of x. A secondary purpose of this section is to verify the effect of
enhancing on the performance of the Med-estimator �̂n.

Our simulations are at first generated by a simple model where the correctness of simulations can be verified by theoretical
means such as the central limit theorem, and where the eventual inaccuracies of computational algorithms can be detected and
excluded. As the next step, they are generated by amore realistic model used formerly by Bianco and Yohai (1996) for verification
of the robustness of their BY-estimator �(2)

n .
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Table 5
Mean absolute errors (4.16) and rejection rates RR for selected estimators �̃n = (�̃n0, �̃n1)T of the true parameter �0 = (�00,�01)T = (−2.82,2.82)T in the logistic
regression model (4.20) �-contaminated by leverage points and preserving Pr(Y = 1) = 0.2

� �̃n n = 50 n = 100 n = 500 n = 1000

MAE RR (%) MAE RR (%) MAE RR (%) MAE RR (%)

0 MLE 0.86 1 0.58 0 0.24 0 0.16 0
Morg 0.95 3 0.64 0 0.26 0 0.18 0
CH 0.84 1 0.58 0 0.25 0 0.17 0
BY 1.53 8 0.94 1 0.31 0 0.21 0
Med 3.27 18 2.55 9 0.92 0 0.50 0
5-Med 2.79 22 1.64 10 0.52 0 0.33 0
10-Med 2.50 24 1.73 10 0.46 0 0.31 0

0.05 MLE 1.07 0 1.00 0 1.06 0 1.07 0
Morg 1.05 1 0.85 0 0.82 0 0.82 0
CH 0.99 0 0.87 0 0.88 0 0.89 0
BY 1.36 4 0.91 1 0.62 0 0.61 0
Med 2.66 12 2.36 7 0.83 0 0.62 0
5-Med 2.00 17 1.78 6 0.64 0 0.59 0
10-Med 1.95 17 1.55 8 0.62 0 0.58 0

0.1 MLE 1.48 0 1.50 0 1.55 0 1.55 0
Morg 1.42 1 1.34 0 1.40 0 1.40 0
CH 1.41 0 1.37 0 1.42 0 1.42 0
BY 1.44 3 1.17 0 1.21 0 1.22 0
Med 2.46 10 1.72 3 1.11 0 1.11 0
5-Med 1.95 12 1.46 4 1.10 0 1.13 0
10-Med 1.96 15 1.36 5 1.10 0 1.13 0

0.2 MLE 2.04 0 2.05 0 2.06 0 2.07 0
Morg 2.01 0 2.01 0 2.02 0 2.03 0
CH 2.01 0 2.01 0 2.02 0 2.03 0
BY 1.97 0 1.97 0 2.00 0 2.01 0
Med 2.22 5 2.00 2 1.83 0 1.88 0
5-Med 1.96 5 1.90 2 1.88 0 1.89 0
10-Med 2.04 5 1.84 1 1.88 0 1.89 0

0.3 MLE 2.37 0 2.37 0 2.39 0 2.39 0
Morg 2.37 0 2.36 0 2.38 0 2.38 0
CH 2.37 0 2.36 0 2.38 0 2.38 0
BY 2.36 0 2.36 0 2.38 0 2.38 0
Med 2.36 2 2.28 0 2.33 0 2.34 0
5-Med 2.31 1 2.29 0 2.34 0 2.34 0
10-Med 2.32 2 2.29 0 2.34 0 2.34 0

The achieved minima are printed bold.

(I) The firstmodel is Be(�(x�0)) for a real valuedparameter�0 and regressors x attaining at time1� i�nmutually independent
randomvalues xi ∈ X={−1,1}with equal probabilities Pr(xi=−1)=Pr(xi=1)= 1

2 .Weuse the concrete parameter value�0=− ln 4
for which p0 = �(�0) = 0.2. For the levels � ∈ {0,0.1,0.2,0,3} and 1� i�n we consider the contaminated logistic regression data

Yi ∼ (1 − �)Be(�(xi�0)) + �Be(1 − �(xi�0)), (4.1)

i.e. instead of the assumed Bernoulli data Yi ∼ Be(�(xi�0)) we generate the distorted Bernoulli data

Yi ∼ Be(xi�(��)) for �� = �−1(�(�0) + �(1 − 2�(�0))) (4.2)

(cf. (1.6) and (1.2)). In this simulation model the above-mentioned estimators �(1)
n − �(3)

n and �̂n take on the univariate forms

�(1)
n − �(3)

n and �̂n. Moreover, their formulas considerably simplify. For derivation of these formulas it is useful to consider the
sets

A+
n = {1� i�n : xi = 1}, A−

n = {1, . . . , n} − A+
n (4.3)

and the statistics

Ỹi =
{

Yi if i ∈ A+
n ,

1 − Yi if i ∈ A−
n .

(4.4)

Clearly,

Ỹi ∼ Be(�(��)) for all 1� i�n and �� given by (4.2). (4.5)
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By (1.10) and (1.11), the Morg-estimator �(1)
n solves the equation∑

i∈A+
n

(Yi − �(�)) −
∑
i∈A−

n

(Yi − 1 + �(�)) = 0,

i.e. coincides with the MLE �n specified in the model of (4.5) by

�n = �−1 (̃pn) for p̃n = 1
n

n∑
i=1

Ỹi (4.6)

for Ỹi given in (4.5).

As to the BY-estimator �(2)
n , one can deduce from (1.3), (1.9) and (1.12)--(1.14) that �(2)

n = �−1(�n) for

�n = arg min
�∈(0.1)

L(pn,�), (4.7)

where

L(pn,�) = p̃n�(− ln�) + (1 − p̃n)�(− ln(1 − �)) + �0(�)

for p̃n given by (4.6) and the functions �,�0 that appear in (1.12). It is easy to see that

d
d�

L(̃pn,�) = (� − p̃n)

[
�′(− ln�)

�
+ �′(− ln(1 − �))

1 − �

]
,

where by (1.15) the derivative �′(t) is non-negative for t >0 and positive for 0< t <1. Therefore �n = p̃n is the unique argmin in
(4.7) which means that �(2)

n coincides with the estimator �n given in (4.6).

The CH-estimator �(3)
n differs from �(2)

n by a somewhat modified function �′(t) and an argument similar to that given above

leads to the conclusion that in the model under consideration �(3)
n coincides with the estimator �n of (4.6) also.

Let us now turn our attention to our Med-estimator �̂n and its k-enhanced versions �̂n∗k . By Definition 3.1,

�̂n = �−1 (̂pn) = ln
p̂n

1 − p̂n
, (4.8)

where

p̂n = arg min
p

⎛⎜⎝∑
i∈A+

n

|Zi − m(p)| +
∑
i∈A−

n

|Zi − m(1 − p)|
⎞⎟⎠= arg min

p

⎛⎜⎝∑
i∈A+

n

|Yi + Ui − m(p)| +
∑
i∈A−

n

|Yi + Ui − 2 + m(p)|
⎞⎟⎠ .

The second equality holds because from (1.21) we deduce that m(1 − p) = 2 − m(p). But

|Yi + Ui − 2 + m(p)| = |Ỹi + Ũi − m(p)|,

where Ỹi is defined by (4.4) and Ũi = 1 − Ui is the same uniform U(0,1)-variable as Ui. Therefore

p̂n = arg min
p

⎛⎝ n∑
i=1

|̃Zi − m(p)|
⎞⎠= m−1 (̃Z(n/2)) (4.9)

for

Z̃i = Ỹi + Ui (cf. (4.5), (1.17)) and Z̃(n/2) = median(̃Z1, . . . , Z̃n). (4.10)

Similarly,

�̂n∗k = �−1 (̂pn∗k) = ln
p̂n∗k

1 − p̂n∗k
, (4.11)

where

p̂n∗k = arg min
p

⎛⎝ k∑
j=1

n∑
i=1

|̃Zij − m(p)|
⎞⎠= m−1 (̃Znk/2) (4.12)
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for

Z̃ij = Ỹi + Uij (cf. (4.5)) and Z̃(nk/2) = median(̃Z11, . . . , Z̃kn), (4.13)

where Uij are independent and uniformly distributed on (0,1).

In Table 2 1000 realizations �̃(1)
n , . . . , �̃(1000)

n have been used to evaluate themean absolute errors

MAE = 1
1000

1000∑
l=1

|̃�(l)
n − �0|, (4.14)

standard deviations (roots of themean squared errors)

STD =
⎛⎝ 1
1000

1000∑
l=1

(�̃(l)
n − �0)2

⎞⎠1/2

(4.15)

and also the rejection rates RR, i.e. the percentages of those data vectors Z̃n = (̃Z1, . . . , Z̃n) or data matrices Z̃k,n = (̃Z11, . . . , Z̃kn) for

which the corresponding estimator �̂n or �̂n∗k was undefined because the median Z̃(n/2) or Z̃(nk/2) was outside of the definition

domain ( 12 , 3
2 ) of the inverse median function m−1(z) (cf. Fig. 2).

From the first (uncontaminated) sector of Table 2 one can verify that
√

n STD(�n) agrees very well already for not too large n
with the asymptotic standard deviation

�(MLE) = 1√
�(�0)(1 − �(�0))

= 1√
0.2 × 0.8

= 2.5

obtained from the limit theorem of Example 2.1. E.g.,
√
50STD(�50)=2.47, or

√
100STD(�100)=2.48. Similarly one can verify that

for the Med-estimator the scaled standard deviation
√

n STD(�̂n) tends with increasing n to the corresponding theoretic value

�(Med) = 1
�(�0)

= 1
0.2

= 5,

e.g.
√
100STD(�̂100) = 6.17 and

√
500STD(�̂500) = 5.5.

Similarly, fromthe �-contaminatedsectorofTable2onecanverify that
√

n STD(�n)and
√

n STD(�̂n)approximate the theoretical
standard deviations

�n(MLE) =
√

n(�� − �0)2 + 1/[�(��)(1 − �(��))]
and

�n(Med) =
√

n(�� − �0)2 + (e|��| + 1)2.

E.g., for �=0.2weget��=−0.7538and (��−�0)2=0.4000 so thatwecompute�n(MLE)=6.68while in the0.2-contaminated sector
of Table 2 we find

√
100STD(�100)=6.54. Similarly we compute �n(Med)=7.05while in the table we find

√
100STD(�̂100)=6.85

which is a satisfactory agreement.
All sectors of Table 2 also clearly indicate that for fixed n the error measures STD(�̂n∗k) and MAE(�̂n∗k) tend, with increasing

k, to the respective values STD(�n) and MAE(�n), in accordance with what has been asserted by Theorem 3.1. However, the main
message of Table 2 is that for larger sample sizes n our Med-estimators �̂n better resist to higher levels of contamination than the
remaining four estimators known from the previous literature.

Table 3 in some sensemore strongly supports the observations and conclusions drawn fromTable 2. In this table the �-fractions
of the data Yi were generated by the false regressors x̃i = −10xi so that they represent leverage points in the common sense of
the regression analysis.

(II) Let us now turn to the second model and the corresponding results in Tables 4 and 5. These tables present similar char-
acteristics as Tables 2 and 3 but based on simulations in more realistic logistic regression models with bivariate parameters
� = (�0,�1)T ∈ R2 and bivariate regressors x = (x0, x1)T ∈ R2. This means among others that in these tables the MAE formula
(4.14) is replaced by

MAE = 1
2000

1000∑
l=1

(|̃�(l)
n0 − �00| + |̃�(l)

n1 − �01|) (4.16)

obtained from 1000 simulated realizations �̃(l)
n = (�̃(l)

n0, �̃(l)
n1)T of an estimator �̃n = (�̃n0, �̃n1)T of true parameters �0 = (�00,�01)T.
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In order to achieve an ideal comparability, all selected estimators �̃n are evaluated for the same simulated data vectors
Yn = (Y1, . . . , Yn) and the related smoothed data vectors or matrices

Zn = (Y1 + U1, . . . , Yn + Un) or Zk,n = (Y1 + U11, . . . , Yn + Ukn) cf. ((1.17), (3.5)).

If numerical evaluation of one of these estimators fails then the corresponding Yn is rejected and replaced by a new independent
realization. This procedure is repeated until the computer successfully numerically evaluates 1000 realizations �̃(1)

n , . . . , �̃(1000)
n

for each of the selected estimators �̃n. The rejection rate RR then specifies for each selected estimator the percentage of the data
vectors Yn rejected during evaluation of the desired 1000 realizations.

Let us explainwhat ismeant by the numerical evaluation of estimates �̃(l)
n =(�̃(l)

n0, �̃(l)
n1)T used in the formulas (4.16) and leading

to theMAE's and RR's that appear in the columns and rows of Tables 4 and 5. It is the evaluation in accordance with the definition
of each corresponding estimator given above, using the iteration procedures presented in the IMSL C Numerical Libraries, version
3.0. The minimization of a function of two variables uses a quasi-Newton method (for details see Dennis and Schnabel, 1983,
Appendix A), and systems of equations are solved using a modified Powell hybrid algorithm (for further description see Moré
et al., 1980). The initial iteration seeds for the MLE �n = (�n0,�n1)T were the true parameters �0 = (�00,�01)T and the initial
iteration seeds for all the remaining estimates �̃n = (�̃n0, �̃n1)T were theMLE's �n = (�n0,�n1)T. Since the values of the estimates
of Tables 4 and 5 are numerically less reliable than those of Tables 2 and 3, the MAE's presented in these tables are rounded to
two decimal places.

Table 4 was obtained from the simulated data Yn = (Y1, . . . , Yn) generated by the contaminated logistic source

Yi ∼ (1 − �)Be(�(xTi �0)) + �Be(1 − �(xTi �0)) (cf. (4.1)) (4.17)

with the random regressors

xi = (xi0 ≡ 1, xi1 ∼ N(0,1))T (4.18)

and true parameters �0 = (�00,�01)T = (−2.82,2.82)T leading to the probability

Pr(Yi = 1) ≡ E�(xTi �0) = 0.2. (4.19)

This data source was used previously by Bianco and Yohai (1996) to demonstrate experimentally the robustness of their BY-
estimator denoted above as �(2)

n .
Table 5 was obtained for the simulated data Yn = (Y1, . . . , Yn) with the contaminated data source (4.17) replaced by

Yi ∼ (1 − �)Be(�(xTi �0)) + �Be(�(̃xTi �0)) (4.20)

with the random regressors xi and true parameters �0 as used in Table 4, but with different random regressors x̃i, given by the
formula

x̃i =
(
1, x̃i1 = �00 + 4 sign

[
−�00

�01
− xi1

]
�01

)
, xi1 ∼ N(0,1) (cf. (4.18)). (4.21)

We see that in (4.20) the source Be(1 − �(xT
i
�0)) of contaminating data is replaced by the source Be(�(̃xT

i
�0)) of leverage points

where the regressors x̃i = x̃i(�0) given by (4.21) are characterized by the property

�(xTi �0) > 1
2 implies �(̃xTi �0) ≈ 0

and

�(xTi �0)� 1
2 implies �(̃xTi �0) ≈ 1.

We see that the results in Tables 4 and 5 basically agreewith those in Tables 2 and 3. An obvious difference between these pairs
of tables is that in thedata sources (4.17)--(4.19)used in the latter tables theMLE�n, theMorg-estimator�(1)

n , theBY-estimator�(2)
n

and the CH-estimator �(3)
n mutually differ. Therefore Tables 4 and 5 compare our Med-estimator �̂n and its k-enhanced versions

�̂n∗k with four different estimators. This means that the reading and interpretation of these two tables is more complicated than
the reading and interpretation of Tables 2 and 3.

It is easy to notice another important difference between Tables 4, 5 and Tables 2 and 3. Namely, in the present tables theMAE
of �̂n∗k does not seem to converge for increasing k to the MAE of the MLE �n. But the MAE(�̂n∗k) still preserves the remaining
properties observed in Tables 2 and 3: For � = 0 and increasing k it monotonically decreases when 50�n�1000 remains fixed.
For �>0 and increasing k it decreases first and then increases, and the larger the sample size n the more visible this phenomenon
is. Another feature shared with Tables 2 and 3 is that the conclusions drawn from the classical contaminated models in Table 4
are even more convincingly supported by Table 5 that was obtained from the models contaminated by leverage points.
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But the main message in Tables 4 and 5 remains the same as in Tables 2 and 3: Our Med-estimator �̂n is more resistent to
the distortions of logistic regression models by contaminations and leverage points than the remaining four estimators when the
levels of distortions are higher and the sample sizes are medium (around n ≈ 100) or large (around n ≈ 1000). For the medium
sample sizes it is convenient to use the k-enhancing for k ≈ 10.

The preferences between the remaining estimators �n and �(1)
n --�(3)

n which can be drawn from Tables 4 and 5 agreewithwhat
has been previously published in the literature, in particular with what was stated in Bianco and Yohai (1996) and Croux and
Haesbroeck (2003).

Letus remark that in their simulationstudyBiancoandYohai (1996)considerednotonly the trueparameters�0=(−2.82,2.82)T

leading to the probability Pr(Yi = 1) given in (4.19) but also true �0 = (�00,�01)T leading to the probabilities 0.3, 0.4 and 0.5.
Alternatives of the Tables 4 and 5 obtained by simulating data corresponding to these�0 can be found inHobza et al. (2006). These
tables provide additional evidence for the conclusions drawn in this paper from Tables 4 and 5. Note that the tables in Hobza et
al. (2006) are larger, and also contain the results for the k-Med-estimator with k = 50.
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